Projections and unconditional bases in direct sums of ℓp spaces, 0<p≤∞

نویسندگان

چکیده

We show that every unconditional basis in a finite direct sum ⨁ p ∈ A ℓ , with ⊂ ( 0 ∞ ] splits into bases of each summand. This settles 40 years old question raised “A. Ortyński, Unconditional ⊕ q < 1 Math. Nachr. 103 (1981), 109–116”. As an application we obtain for any finite, the spaces Z = 2 and c have unique up to permutation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconditional Bases and Unconditional Finite-dimensional Decompositions in Banach Spaces

Let X he a Banach space with an unconditional finite-dimensional Schauder decomposition (En). We consider the general problem of characterizing conditions under which one can construct an unconditional basis for X by forming an unconditional basis for each En. For example, we show that if sup,, dim En < c~ and X has Gordon-Lewis local unconditional s t ructure then X has an unconditional basis ...

متن کامل

Ultra Bessel sequences in direct sums of Hilbert spaces

In this paper, we establish some new results in ultra Bessel sequences and ultra Bessel sequences of subspaces. Also, we investigate ultra Bessel sequences in direct sums of Hilbert spaces. <span style="font-family: NimbusRomNo9L-Regu; font-size: 11pt; color: #000000; font-s...

متن کامل

Uniqueness of Unconditional Bases in Banach Spaces

We prove a general result on complemented unconditional basic sequences in Banach lattices and apply it to give some new examples of spaces with unique unconditional basis. We show that Tsirelson space and certain Nakano spaces have unique unconditional bases. We also construct an example of a space with a unique unconditional basis with a complemented subspace failing to have a unique uncondit...

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

Polynomials on Banach Spaces with Unconditional Bases

We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2021

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.201900537